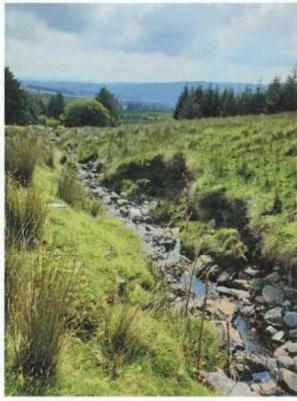


APPENDIX 9.2:

INCHAMORE WIND FARM SITE PHOTOGRAPHS

Appendix 9.2 - Photographs

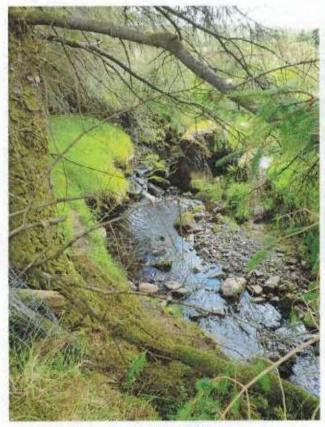

(File Ref. 3188-A2-008; 603679)

Inchamore WF, Co. Cork Photographs

Appendix 9.2 - Photographs Subject: Baseline Surface Water Monitoring Location - SW1 (File Ref. 3188-A2-008; 603679)

Surface Water Sampling R1 12/08/2020 (Dry)

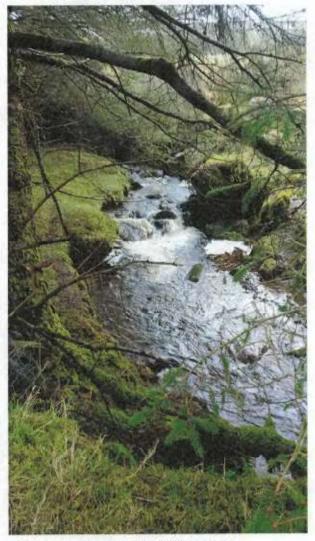
Surface Water Sampling R1 12/08/2020 (Dry)



Surface Water Sampling R3 24/02/2021 (Wet)

File Ref. 3188-008; 603679 App 9.2

Appendix 9.2 - Photographs Subject: Baseline Surface Water Monitoring Location - SW2 (File Ref. 3188-A2-008; 603679)



Surface Water Sampling R1 12/08/2020 (Dry)

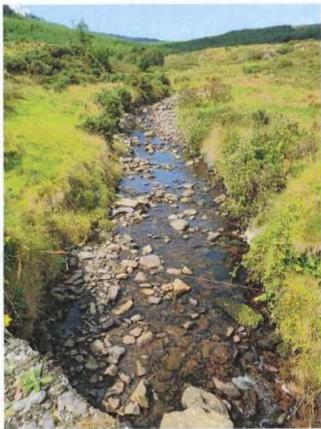
Surface Water Sampling R1 12/08/2020 (Dry)

Surface Water Sampling R3 24/02/2021 (Wet)

Appendix 9.2 - Photographs Subject: Baseline Surface Water Monitoring Location - SW3 (File Ref. 3188-A2-008; 603679)

Surface Water Sampling R1 12/08/2020 (Dry)

Surface Water Sampling R1 12/08/2020 (Dry)



Surface Water Sampling R3 24/02/2021 (Wet)

File Ref. 3188-008; 603679 App 9.2

Appendix 9.2 – Photographs Subject: Baseline Surface Water Monitoring Location - SW4 (File Ref. 3188-A2-008; 603679)

Surface Water Sampling R1 12/08/2020 (Dry)

Surface Water Sampling R1 12/08/2020 (Dry)

Surface Water Sampling R3 24/02/2021 (Wet)

Appendix 9.2 - Photographs Subject: Existing Pressures & Observations (File Ref. 3188-A2-008; 603679)

Preparation for forestry plantation observed during Surface Water Sampling R4 16/03/2021, near SW1.

Evidence of peat cutting observed during site surveys 16/06/2020.

Appendix 9.2 – Photographs Subject: Existing Pressures & Observations (File Ref. 3188-A2-008; 603679)

Existing artificial / modified drainage observed during site surveys 16/06/2020.

New access track and drainage associated with ongoing forestry activities observed during site surveys 16/06/2020.

Appendix 9.2 - Photographs Subject: Existing Pressures & Observations (File Ref. 3188-A2-008; 603679)

Peat and till exposed at new access track and drainage associated with ongoing forestry activities observed during site surveys 16/06/2020.

Appendix 9.2 – Photographs Subject: Existing Pressures & Observations (File Ref. 3188-A2-008; 603679)

Peat and till exposed at new access track and drainage associated with ongoing forestry activities observed during site surveys.

Appendix 9.2 - Photographs Subject: Existing Pressures & Observations (File Ref. 3188-A2-008; 603679)

Peat and till exposed at new access track and drainage associated with ongoing forestry activities observed during site survey.

APPENDIX 9.3:

HYDROCHEMISTRY DATABASE

Minerex Environmental Sample Details	Sampling Event (Date Sampled)		LIMITS re EIA (Ref. NRA) Indicative Limits Re.: Bathing, Drinking Surface Water reg's.				
Sample ID	ALL			SW1	SW2	sw3	SW4
Site	ALL				10000		
Project COC Reference - SW R1	12/08/2020		Dry / Low Flow	A2-Inchamore 3188-028-COC1	A2-Inchamore 3188-028-COC1	A2-Inchamore 3188-028-COC1	A2-Inchamore 3188-028-COC
Project COC Reference - SW R2	26/08/2020		Wet / High Flow	3188-028-COC2	3188-028-COC2	3188-028-COC2	3188-028-COC
Project COC Reference - SW R3	24/02/2021		Wet / High Flow	3188-028-COC4	3188-028-COC4	3188-028-COC4	3188-028-COC
Project COC Reference - SW R4	16/03/2021		Dry / Low Flow	3188-028-COC3	3188-028-COC3	3188-028-COC3	3188-028-COC
Sample Type	ALL	Medum		Surface Water	Surface Water	Surface Water	Surface Water
Grid Reference for Sampling Location	ALL	Irish Grid		513031.2, 578569.0	513613.1, 577809.8	513338.0, 577571.8	512057.7, 57739
Field Data - Discharge							
Surface Water Feature	ALL	Туре		Ditch	Drain	Drain	
Description of sample location	ALL	Type		Alongside feature	Road bridge	Road bridge	Road
Width of Water Body	ALL	m		<1.0	1.5	2	
Depth (d)	ALL	m		<0.2	<0.25	< 0.25	
Total Rain 3 Days Prior (Table 9.11)	12/08/2020	mm/72hours				0.0	
Total Rain 3 Days Prior (Table 9.11) Total Rain 3 Days Prior (Table 9.11)	26/08/2020 24/02/2021	mm/72hours				9.7	
Total Rain 3 Days Prior (Table 9.11) Total Rain 3 Days Prior (Table 9.11)	24/02/2021 16/03/2021	mm/72hours mm/72hours				7.8	
Estimated Discharge Rate (Q)	12/08/2020	l/sec		1 to 2	6 to 8	6 to 8	
Estimated Discharge Rate (Q)	26/08/2020	l/sec		5 to 6	8 to 10	20 to 25	50
Estimated Discharge Rate (Q)	24/02/2021	l/sec		5 to 6		20 to 25	50
Estimated Discharge Rate (Q)	16/03/2021	l/sec	THE RESERVE OF THE PERSON NAMED IN COLUMN 1	2 to 4		6 to 8	
Laboratory Data - Hydrochemistry		Keller	The second	100			
Alkalinity, Bicarbonate as CaCO3	12/08/2020	mg/l		9.11	22.5	10	
Alkalinity, Bicarbonate as CaCO3	26/08/2020	mg/l		4.5	22.5 7.5	18	
Alkalinity, Bicarbonate as CaCO3	24/02/2021	mg/l		2.5	4	2	
Alkalinity, Bicarbonate as CaCO3	16/03/2021	mg/l		5.5	7.5	5.5	
Alkalinity, Total as CaCO3	12/08/2020	mg/l		9.11	22.5	18	
Alkalinity, Total as CaCO3	26/08/2020	mg/l		4.5	7.5	9	
Alkalinity, Total as CaCO3 Alkalinity, Total as CaCO3	24/02/2021 16/03/2021	mg/l		2.5	4	2	
Ammoniacal Nitrogen as N (low level)	12/08/2020	mg/l	0.02	5.5 0.0245	7.5 0.0121	5.5	
Ammoniacal Nitrogen as N (low level)	26/08/2020	mg/l	0.02	0.0164	0.0121	0.0243	
Ammoniacal Nitrogen as N (low level)	24/02/2021	mg/l	0.02	0.037	0,036	0.024	
Ammoniacal Nitrogen as N (low level)	16/03/2021	mg/l	0.02	0.04	0.042	0.029	
Apparent Colour	12/08/2020	mg/l Pt/Co		30.8	31,2	97	
Apparent Colour	26/08/2020	mg/l Pt/Co		96	62.7	165	
Apparent Colour Apparent Colour	24/02/2021 16/03/2021	mg/l Pt/Co mg/l Pt/Co		37.4 20.4	75.2	52	
Conductivity @ 20 deg.C	12/08/2020	mS/cm	2.5	0.0578	35.9 0.057	20.9 0.0757	-
Conductivity @ 20 deg.C	26/08/2020	mS/cm	2.5	0.0376	0.0304	0.0757	0
Conductivity @ 20 deg.C	24/02/2021	mS/cm	2.5	0.025	0.0377	0.0281	0
Conductivity @ 20 deg.C	16/03/2021	mS/cm	2.5	0.0539	0.0706	0.0568	0
Vitrate as NO3	12/08/2020	mg/l		0,539	<0.3	<0.3	
Nitrate as NO3	26/08/2020	mg/l		0.374	<0.3	<0.3	
Vitrate as NO3	24/02/2021 16/03/2021	mg/l		50.3	0.364	<0.3	
Vitrate as NO2	12/08/2020	mg/l	6.62	<0.3	<0.3	<0.3	
Nitrite as NO2	26/08/2020	mg/l mg/l	0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	
Nitrite as NO2	24/02/2021	mg/l	0.05	0.273	<0.05 <0.05	<0.05 <0.05	
Nitrite as NO2	16/03/2021	mg/l	0.05	<0.05	<0.05	<0.05	
Н	12/08/2020	pH Units	>6 & <9	6.88	7.08	7.13	
oH .	26/08/2020	pH Units	>6 & <9	5,73	6.50	6.35	
oH oH	24/02/2021	pH Units	>6 & <9	6.69	6,74	6.47	
Phosphate (Ortho as P)	16/03/2021	pH Units	>6 & <9	6.75	6.97	7.38	
Phosphate (Ortho as P)	12/08/2020 26/08/2020	mg/l		<0.02	<0.02	<0.02	
Phosphate (Ortho as P)	24/02/2021	mg/l mg/l		<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	
Phosphate (Ortho as P)	16/03/2021	mg/l	W	<0.02	<0.02	<0.02	
Phosphorus (tot.unfilt)	12/08/2020	µg/l		<20	<20	24.1	
Phosphorus (tot.unfilt)	26/08/2020	µg/l		<20	<20	23.1	
	24/02/2021	µg/l		<20	<20	<20	
Phosphorus (tot.unfilt)	16/03/2021	µg/l		<20	<20	<20	
Suspended solids, Total Suspended solids, Total	12/08/2020 26/08/2020	mg/l	25	<2	<2	(2	
the state of the s	24/02/2021	mg/l mg/l	25 25	<2	<2 2.55	<2	
Suspended solids, Total	16/03/2021	mg/l	25	<2	2.55	<2 <2	
rue Colour	12/08/2020	mg/l Pt/Co	23	24.7	21.1	76.6	
rue Colour	26/08/2020	mg/l Pt/Co		84.7	51.9	143	
rue Colour	24/02/2021	mg/l Pt/Co		31.4	61.2	44.2	
TO THE PERSON NAMED IN COLUMN TO THE	16/03/2021	mg/l Pt/Co		13.8	26.8	14.2	
	12/08/2020	ntu		0.54	0.674	2.06	
	26/08/2020	ntu		1.28	0.562	1.53	
urbidity	24/02/2021	ntu		0.561	3.65	1.62	

APPENDIX 9.4:

SW LABORATORY CERTS

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700

Fax: (01244) 528701

email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

Minerex Environmental Taney hall Eglinton Terrace Dundrum Dublin Dublin 14

Attention: Sven Klinkenbergh

CERTIFICATE OF ANALYSIS

Date of report Generation:

Customer:

lample Delivery Group (SDG):

Your Reference:

Location:

Report No:

20 August 2020

Minerex Environmental

200814-71

3188-A2-COC1

Inchamore, Co. Cork

564014

We received 4 samples on Friday August 14, 2020 and 4 of these samples were scheduled for analysis which was completed on Thursday August 20, 2020. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan
Operations Manager

lac MRA

SDG: 200814-71 Location: Inchamore, Co. Cork Client Reference: Order Number: 3188-A2-COC1

Report Number: Superseded Report: 564014

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
22656606	3188-SW1		0.00 - 0.00	12/08/2020
22656623	3188-SW2		0.00 - 0.00	12/08/2020
22656636	3188-SW3		0.00 - 0.00	12/08/2020
22656649	3188-SW4		0.00 - 0.00	12/08/2020

Maximum Sample/Coolbox Temperature (°C):

ISO5667-3 Water quality - Sampling - Part3 -

During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of (5±3)°C.

17.4

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of (5±3)°C for a period of up to 24hrs.

Only received samples which have had analysis scheduled will be shown on the following pages.

3188-A2-COC1 564014 200814-71 SDG: Client Reference: Report Number: Superseded Report: Location: Inchamore, Co. Cork Order Number: is Legend 22656649 Lab Sample No(s) X Test No Determination Possible 3188-SW3 3188-SW4 Customer Sample Reference Sample Types -S - Soil/Solid UNS - Unspecified Solid GW - Ground Water **AGS Reference** SW - Surface Water LE - Land Leachate PL - Prepared Leachate PR - Process Water 0.00-0.00 0.00 - 0.00 0.00 - 0.00 0.00-0.00 SA - Saline Water Depth (m) TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage RE - Recreational Water 500ml Plastic (ALE208) NaOH (ALE245) 500ml Plastic (ALE208) NaOH (ALE245) HNO3 Unfiltered (ALE204) H2SO4 (ALE244) 500mi Plastic (ALE208) NBOH (ALE245) HNO3 Unfiltered (ALE204) H2SO4 (ALE244) (ALEZO4) HNO3 Unfiltered (ALE204) H2SO4 (ALE244) NaOH (ALE245) H2SO4 (ALE244) (ALE208) DW - Drinking Water Non-regulatory UNL - Unspecified Liquid agbu Container UTH - Other WS WIS WS MS SW WS MIS MIS WB Sample Type WS WIS MAS MAS WS WIS WS Alkalnity as CoCO3 Alt NOPs: 0 Tests: 4 х X х X Ammonium Low AR NDPs: 0 Tests: 4 X X X × AI Anions by Kone (w) NDPs: 0 Tests: 4 × X Х Colour Test All. NOPs: 0 Tosts: 4 X X X × Conductivity (at 20 deg.C) All. NDPs: 0 Tasts: 4 × х × Nitrite by Korie (w) A# NDPs: 0 Tests: 4 X X X X AE NDPs: 0 Tests: 4 X X X X Phosphate by Kone (w) ΛĒ NDPs: 0 Tests: 4 Х X X X Suspended Solids AE NDPs: 0 Tests: 4. X X X х Total Metals by ICP-MS AE NOPs: 0 × X X X

Turbidity in waters

All.

NDPs: 0

X

X

SDG: Location: 200814-71 Inchamore, Co. Cork

Client Reference: Order Number: 3188-A2-COC1

Report Number: Superseded Report:

564014

Results Legend # 6001733 screethyl. # e00073 screethyl.		ustamer Sample Ref.	3188-SW1	3168-5WZ	3188-SW3	3186-6844	
on Approved Leafford sample. Ann. 201 Description Commission and Commission	nct the	Depth (nt) Semple Type Date Sampled Sample Time Date Received SDG Ref Lab Sample No.(s) AGS Raterense	0.00 - 0.00 Surface Water (SW) 12/M5/2023 00:00 14/08/2020 200814-71 22/20/904	0.00 - 0.00 Outleen Water (5W) 52(66/2020 00:00 14/06/2020 200:14-71 22(5/66/23	0.00 - 0.00 Surface Water (SW) 12/06/2020 00:00 14/02/2020 2008/14-71 22/05/9/201	0.00 - 0.00 Surface Water (DR) 12/16/2020 00:36 14/08/2020 2006/14-71 22/5/66/49	
Component	LOD/Units	Method	The same of the				
Suspended solids, Total	<2 mg/l	TM022	<2 #	<2 #	<2 #	<2 #	
Alkalinity, Total as CaCO3	<2 mg/l	TM043	9.11	22.5	18 #	16 #	
Alkalinity, Bicarbonate as CaCO3	<2 mg/l	TM043	9.11	22.5	18	16	
Ammoniacal Nitrogen as N (low level)	<0.01 mg/l	TM099	0.0245	0.0121	0.0243	0.028	
Conductivity @ 20 deg.C	<0.02	TM120	0.0578	0.057	0.0757	0.0625	
Phosphorus (tot.unfilt)	mS/cm <20 µg/l	TM152	<20 #	<20 #	24.1	<20 #	
Nitrite as NO2	<0.05 mg/l	TM184	<0.05	<0.05	<0.05	<0.05	
Phosphate (Ortho as P)	<0.02 mg/l	TM184	<0.02	<0.02	<0.02	<0.02	
Nitrate as NO3	<0.3 mg/l	TM184	0.539	<0.3	<0.3	<0,3	
Turbidity	<0.1 ntu	TM195	0.54	0.674	2.06	1,17	
pH	<1 pH Units	TM256	6.88	7.08	7.13	7.13	
Apparent Colour	<1 mg/l	TM261	30.8	31.2	97	65.8	
True Colour	<1 mg/l Pt/Co	TM261	24,7	21.1	76.6	48.3	
						1	

Validated

SDG: Location: 200814-71 Inchamore, Co. Cork Client Reference: Order Number: 3188-A2-COC1

Report Number: Superseded Report: 564014

Table of Results - Appendix

Method No	Reference	Description
TM022	Method 2540D, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part120 1981;BS EN 872	Determination of total suspended solids in waters
TM043	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690; Part109 1984	Determination of alkalinity in aqueous samples
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyses
TM120	Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM195	Colour and Turbidity of water, Methods for the Examination of Waters and Associated Materials, HMSO, 1981, ISBN 0 11.751955 3.	Determination of Turbidity in Waters & Associated Matrices
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter
TM261	Colour and Turbidity of Waters, Methods for the Examination of Waters and Associated Materials, HMSO, 1981, ISBN 0 11 7519553.	Determination of True and Apparent Colour by Spectrophotometry

" vt applicable.

C I testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

Validated

SDG; Location: 200814-71

Inchamore, Co. Cork

Client Reference: Order Number:

3188-A2-COC1

Report Number: Superseded Report:

564014

Test Completion Dates

Lab Sample No(s)	22656606	22656623	22656636	22656649
Customer Sample Ref.	3186.8W1	- 8186-6W2	3198.5W3	2006/00/4
AGS Ref.				
Depth	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00
Туре	Surface Water	Surface Water	Surface Water	Surface Water
Alkalinity as CaCO3	19-Aug-2020	19-Aug-2020	19-Aug-2020	19-Aug-2020
Ammonium Low	18-Aug-2020	19-Aug-2020	15-Aug-2020	18-Aug-2020
Anions by Kone (w)	17-Aug-2020	19-Aug-2020	19-Aug-2020	19-Aug-2020
Colour Test	18-Aug-2020	18-Aug-2020	18-Aug-2020	18-Aug-2020
Conductivity (at 20 deg.C)	19-Aug-2020	19-Aug-2020	19-Aug-2020	19-Aug-2020
Nitritle by Kone (w)	17-Aug-2020	19-Aug-2020	18-Aug-2020	17-Aug-2020
pH Value	19-Aug-2020	19-Aug-2020	19-Aug-2020	19-Aug-2020
Phosphate by Kone (w)	20-Aug-2020	20-Aug-2020	20-Aug-2020	20-Aug-2020
Suspended Solids	20-Aug-2020	19-Aug-2020	19-Aug-2020	19-Aug-2020
Total Metals by KCP-MS	19-Aug-2020	19-Aug-2020	19-Aug-2020	19-Aug-2020
Turbidity in waters	18-Aug-2020	18-Aug-2020	18-Aug-2020	18-Aug-2020

SDG: Location: 200814-71 Inchamore, Co. Cork Client Reference: Order Number: 3188-A2-COC1

Report Number: Superseded Report: 564014

, pendix

General

- Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOL pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be up as an invalid VOC on the test schedule and the result marked as deviating on it pertificate.
- 6. NDP No determination possible due to insufficient/unsuitable sample.
- 7. Results relate only to the items tested
- 8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
- 9. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- Stones/debris are not routinely removed. We always endeavour to take a representative sub-sample from the received sample.
- 11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 12. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss in ur.
- 14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantity for benzene, soluene, ethylenesenses and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ugikg or ugil. Although this analysis is commonly used for the quantification of geseline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsety high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17. Tentatively identified Compounds (TiCs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively identified Compounds (TiCs). TiCs are outside the scope of UKAS accreditation and are not moisture corrected.

16. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
§	Sampled on date not provided
	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples

19. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised subsample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop diapersion staining, based on HSG 248 (2005).

Asie die Spie	Commiss Name
Chrysottie	WhiteAdminis
Arrosta	Brown Aubentin
Codadis	Shin Albertes
Fitnus Atholie	
Retries Antophyline	140
Fèrose Tiensille	

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 µm diameter, longer than 5 µm and with aspect ratios of at least 3.1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Standing Committee of Analysts, The Quantification of Asbestos in Soil (2017)

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Minerex Environmental Taney hall Eglinton Terrace Dundrum Dublin Dublin 14

Attention: Sven Klinkenbergh

Manor Road (off Manor Lane)
Hawarden
Deeside
CH5 3U
Tel: (01244) 52870
Fax: (01244) 528701
email: hawardencustomerservices@alsglobal.com

Unit 7-8 Hawarden Business Park

Website: www.alsenvironmental.co.uk

CERTIFICATE OF ANALYSIS

Date of report Generation:

Customer:

Sample Delivery Group (SDG):

Your Reference:

Location:

Report No:

05 September 2020

Minerex Environmental

200828-87

3188-A2-COC2

Inchamore, Co. Cork

566071

We received 4 samples on Friday August 28, 2020 and 4 of these samples were scheduled for analysis which was completed on Saturday September 05, 2020. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan

Operations Manager

Validated

CERTIFICATE OF ANALYSIS

SDG: 200828-87 Location: Inchamore, Co. Cork Client Reference: Order Number: 3188-A2-COC2

Report Number: Superseded Report: 566071

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
22737270	3188-SW1		0.00 - 0.00	27/08/2020
22737286	3188-SW2		0.00 - 0.00	26/08/2020
22737302	3188-SW3		0.00 - 00.00	26/08/2020
22737315	3188-SW4		0.00 - 0.00	26/08/2020

Only received samples which have had analysis scheduled will be shown on the following pages.

SDG: 200828-87 Client Reference: 3188-A2-COC2 566071 Report Number: Location: Inchamore, Co. Cork Order Number: Superseded Report: Results Legend 22737270 22737286 22737302 22737315 Lab Sample No(s) X Test No Determination Possible 3188-SW3 Customer 3188-SW2 Sample Reference Sample Types -5 - Sol/Solid UNS - Unspecified Solid GW - Ground Water **AGS Reference** SW - Surface Water LE - Land Leachate PL - Prepared Leachate PR - Process Water 0.00-0.00 0.00 - 0.00 0,00-0,00 0.00-0.00 SA - Saline Water Depth (m) TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage RE - Recreational Water HNO3 Untillered (ALE204) H2SO4 (ALE244) HNO3 Unfiltered (ALE204) H2SO4(ALE244) HNO3 Unfillered (ALE204) H2SO4 (ALE244) 500mi Plastic (ALE208) NaOH (ALE245) 500mi Plastic (ALE208) NaOH (ALE245) HNO3 urfiltered (ALE204) HZSO4 (ALE244) spiastic (ALE221) MaOH 500mi Plastic (ALE208) NaOH (ALE245) DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge Container ALE245) G - Gas OTH - Other Sample Type Wis Wis MS WS SW WIS SW SS. MS WS WIS MAS Wis MS SW SW Alkalinity as CaCOS AİI NDP= 0 Tests: 4 х x X х Ammonium Low All NDPE 0 Tests: 4 X X × X Anions by Kone (w) All NDPs: 0 Tests: 4 X Colour Test AB NDP± 0 Tests: 4 × X X × Conductivity (at 20 deg.C) AB NOP#: 0 Tests: 4 X X X Nitrite by Kone (w) ΑR NDPs: 0 × X X × pH Value All NDP=0 Tests: 4 X X х Phosphate by Kone (w) All NDPE 0 Teets: 4 X X X All Suspended Solids NOPE 0 X X Х х Total Metals by ICP-MS Al NDPs: 0 Tests: 4 X X X х

Turbidity in waters

All

NOPE 0 Tests: 4

×

×

×

SDG: Location: 200828-87 Inchamore, Co. Cork

Client Reference: Order Number: 3188-A2-COC2

Report Number: Superseded Report: 566071

# ISD17925 according.	C.	antomer Sample Ref.	3189-6W1	2 188-5W2	3166-SW3	3169-5964	
Appeared Feetford enough. Described Morred annuals. bid-cells of Morred annuals. bid-cells cellshowed annuals. bid-cellshowed annuals. bid-cellshowed annuals. Si sourcey of the non-speke viscolated to the efficiency of the months. The results of boths congruends within annuals on supplemental annuals. Si sourcey of the months. The results of boths congruends within annuals on supplemental annuals. Managementals and the supplemental annuals. Si pages forward youthfrend	ot the	Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref Lab Sample Mo.(n)	0.00 - 0.00 Surface Water (SW) 27/08/2020 60:00 28/08/2020 20/08/20407 22/17/270	0.50 - 0.29 Surface Water (SW) 26/06/2020 09:00 26/06/2020 20/04/2047 20/27/286	0.00 - 0.00 Surfaces Water (SW) 2606/2020 00:50 2806/2520 2006/3647 22737302	0.00 - 0.00 Factors Waler (SW) 28/08/2020 00:00 28/08/2020 20/08/28-67 227/37/315	
1-545E Sample destation (see appendix)	LODEL	AGS Reference	1000	39.00		0.000	
Component Suspended solids, Total	<2 mg/l	TM022	<2 #	<2 #	<2 #	<2 #	
Alkalinity, Total as CaCO3	<2 mg/l	TM043	4,5 #	7.5	9 #	18.6	
Alkalinity, Bicarbonate as	<2 mg/l	TM043	4.5	7.5	9	18.6	
CaCO3 Ammoniacal Nitrogen as N (low	<0.01 mg/l	TM099	0.0164 #	0.0177 #	0.0321	0.018	
level) Conductivity @ 20 deg.C	<0.02	TM120	0.0427	0.0304	0.063	0.0526 #	
Phosphorus (tot.unfilt)	mS/cm <20 µg/l	TM152	<20 #	<20 #	23.1	<20	
Vitrite as NO2	<0.05 mg/t	TM184	<0.05	<0.05	<0.05	<0.05	
ite (Ortho as P)	<0.02 mg/l	TM184	<0.02	<0.02	<0.02	<0.02	
Nitrate as NO3	<0.3 mg/l	TM184	0.374	<0.3	<0.3	0.456	
Turbidity	<0.1 ntu	TM195	1.28	0.562	1.53	0.885	
pH	<1 pH Units	TM256	5.73	6.59	6.35	6.96	
Apparent Colour	<1 mg/l	TM261	96	62.7	165	79.3	
True Colour	Pt/Co <1 mg/l	TM261	84.7	51.9	143	66.3	
	Pt/Co						
	1						
10	-			2			
				-			

SDG: 200828-87 Inchamore, Co. Cork Location:

Client Reference: Order Number:

3188-A2-COC2

Report Number: Superseded Report:

566071

Table of Results - Appendix

TM022	Method 2540D, AWWA/APHA, 20th Ed., 1999 / BS 2690:	Determination of total suspended solids in waters
TM043	Part120 1981;8S EN 872 Method 23208, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in equeous samples.
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM120	Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM195	Colour and Turbidity of water. Methods for the Examination of Waters and Associated Materials. HMSO, 1981, ISBN 0- 11-751955-3.	Determination of Turbidity in Waters & Associated Matrices
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters, HMSO, 1978, ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter
TM261	Colour and Turbidity of Waters, Methods for the Examination of Waters and Associated Materials, HMSO, 1981, ISBN 0 11 7519553.	Determination of True and Apparent Colour by Spectrophotometry

SDG: 20 Location: Inc

200828-87 Inchamore, Co. Cork Client Reference: Order Number: 3188-A2-COC2

Report Number: Superseded Report: 566071

Test Completion Dates

Lab Sample No(s)	22737270	22737286	22737302	22737315
Customer Sample Ref.	3106-SW1	3186-5802	3180-EW3	200,004
AGS Ref.				
Depth	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00
Туре	Surface Water	Surface Water	Surface Water	Surface Water
Alkalinity as GaCO3	04-Sep-2020	04-Sep-2020	04-Sep-2020	03-Sep-2020
Ammonium Low	03-Sep-2020	03-Sep-2020	05-Sep-2020	05-Sep-2020
Anions by Kone (w)	03-Sep-2020	03-Sep-2020	03-Sep-2020	03-Sep-2020
Colour Test	03-Sep-2020	03-Sep-2020	03-Sep-2020	03-Sep-2020
Conductivity (at 20 deg.C)	02-Sep-2020	02-Sep-2020	02-Sep-2020	02-Sep-2020
Nitrite by Kone (w)	03-Sep-2020	03-Sep-2020	03-Sep-2020	03-Sep-2020
pH Value	02-Sep-2020	02-Sep-2020	02-Sep-2020	02-Sep-2020
Phosphate by Kone (w)	03-Sep-2020	03-5ep-2020	63-Sep-2020	03-Sep-2020
Suspended Solids	03-Sep-2020	03-Sap-2020	63-Sep-2020	03-Sep-2020
Total Metals by ICP-MS	04-Sep-2020	04-Sep-2020	04-Sep-2020	04-Sep-2020
Turbidity in waters	03-Sep-2020	03-5ep-2020	03-Sep-2020	03-Sep-2020

SDG: Location: 200828-87 Inchamore, Co. Cork Client Reference: Order Number: 3188-A2-COC2

Report Number: Superseded Report: 566071

Appendix

General

- Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. If sufficient sample is received a sub sample will be retained free of charge for 3D days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 5 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not acheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analyzed.
- With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionners or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- NDP No determination possible due to insufficient/unsuitable sample.
- 7. Results relate only to the items tested.
- 8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
- 9. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- Stones/debris are not routinely removed. We always endeavour to take a representative sub-sample from the received sample.
- 11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
- 14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and sylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ugrikg or ugil. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of ⇒75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified refetive to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantifiative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accorditation and are not moisture corrected.

18. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
§	Sampled on date not provided
	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples

19. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TMO48 based on HSG 248 (2005), which is accredited to ISO17025. If a appecific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed disemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised subsample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Assessed Type	Earnen hann
Chrysolle	Wels-Adminis
Aresida	BrownAsbecks
On oxinite	Star Advance
Filmes Attroffic	
Rheus Antophylide	4
Fitrous TrimeDite	140

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two assessos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 µm diameter, longer than 5 µm and with aspect ratios of at least 3.1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Standing Committee of Analysts, The Quantification of Asbestos in Soil (2017).

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US

Tel: (01244) 528700 Fax: (01244) 528701

email: hawardencustomerservices@alsglobal.com Website: www.alservironmental.co.uk

Minerex Environmental Taney hall Eglinton Terrace Dundrum Dublin Dublin 14

Attention: Sven Klinkenbergh

CERTIFICATE OF ANALYSIS

Date of report Generation:

^ustomer

ample Delivery Group (SDG):

Your Reference:

Location:

Report No:

04 March 2021

Minerex Environmental

210301-15

3188-A2-COC4

Inchamore, Co. Cork

589280

We received 4 samples on Monday March 01, 2021 and 4 of these samples were scheduled for analysis which was completed on Thursday March 04, 2021. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan

Operations Manager

Validated

SDG: 210301-15 Location: Inchemore, Co. Cork

Client Reference: Order Number: 3188-A2-COC4

Report Number: Superseded Report: 589280

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
23815010	3188-A2-SW1 (Inch. 1)		0.00 - 0.00	24/02/2021
23815030	3188-A2-SW2 (Inch. 2)		0.00 - 0.00	24/02/2021
23815049	3188-A2-SW3 (Inch. 3)		0.00 - 0.00	24/02/2021
23815061	3188-A2-SW4 (Inch. 4)		0.00 - 0.00	24/02/2021

Only received samples which have had analysis scheduled will be shown on the following pages.

LS

SDG: 210301-15 Client Reference: 3188-A2-COC4 Report Number: 589280
Location: Inchamore, Co. Cork Order Number: Superseded Report:

Location:	Inchamore, C	Ju. Cork	Orde	reun	iber.							55000					
x Legend X Test	Lab Sample	e No(s)			23815010				23815030				23815049				23815061
Possible Sample Types -	Custon Sample Ref				3188-A2-SW1 (Inch.			332	3188-A2-SW2 (Inch.				3188-A2-SW3 (Inch. 3)				3188-A2-SW4 (Inch.
5 - Sall/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leschelle	AGS Refe	rence						N									
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage	Depth ((m)		200 000	0,00 - 0,00				0.00-0.00				0.00-0.00				0.00 - 0.00
US - Untreated Sewage RE - Recreational Water DW - Denking Water Non-regulatory 'rea' 'Inspectfied Liquid idge OTH - Other	Contair	ner	500ml Plastic (ALE208)	H2SO4 (ALE244)	NaOH (ALE245)	(ALEZOS)	H2SO4 (ALE244)	HND3 Unfiltered (ALE204)	NaDH (ALE245)	(ALEZOS)	H2SO4 (ALE244)	HNO3 Unfiltered (ALE204)	NaOH (ALE245)	500ml Plastic (ALE208)	H2SO4(ALE244)	HNO3 Unfiltered (ALE204)	NaOH (ALE245)
	Sample '	Туре	MS	WS	WS	No.	NS W	SS W	WS	WS	WS	WS	NS.	MS	MS	WS	WS
Alkalinity as CaCO3	AR	NDPs: 0 Tests: 4	x			х				x				x			
Ammonium Low	All	NDPs: 0 Tests: 4		x			x				x				x		
Aniens by Kone (w)	All	NDPs: 0 Tests: 4	X			×		-		х				x			
Colour Test	Alt	NDPs: 0 Tests: 4	x		H	×				х				x			
Conductivity (at 20 deg.C)	All	NDPs: 0 Tests: 4	x			x				×				x			
Notice by Kone (w)	Af	NDPs: 0 Tests: 4			х				x				×				×
	AR	NDP± 0 Tests: 4	x			Х				X				х			
Phosphate by Kone (w)	AB	NDPs: 0 Testx: 4	x			x				x				х			
Suspended Solids	AE	NOPs: 0 Tests: 4	×			x				x				x			
Total Metals by ICP-MS	AB	NDPv: D Tests: 4	×					х				x				x	
Turbidity in waters	All	NOPs: 0 Tests: 4	X			×				х				X			

SDG: Location:

210301-15 Inchamore, Co. Cork

Client Reference: 3188-A2-COC4 Order Number:

Report Number: Superseded Report:

589280

# INSTITUTE exception. # INSTITUTE exception. # INSTITUTE exception. # Appearum 1 had being in.		setomer Sample Ref.	3180-A2-SWT (bods. 1	3188-A2-SW2 (hot. 2	3188-A2-SW3 (hun. 3	3198-A2-0W4 (hish, 4	
or Agreem's reflect energie. Make IR Section's Remain energie. Make IR Section's Remain energie. Make IR section of the sec	ack the locked	Depth (m) Sample Type Date Sampled Sample Time Date Recolved SDR Ref Lali Sample No.(a) AGG Ralanance	0.00 - 0.00 Surface Water (6W) 2400/5021 03.00 03/03/2021 2700/3-15 23815010	0.00 - 0.00 Surface Water (SW) 2400/2021 00.00 5103/2021 210301-15 23815030	0.00 + 0.00 Surface Water (SW) 2400/2021 00:00 01/03/2021 21/0301-15 23815049	0.00 + 0.00 Surface Weiter (SW) 249000021 90:00 0103/2021 210301-15 23815061	
Component	LOD/Units	Method					
Suspended solids, Total	<2 mg/l	TM022	<2 #	2.55	<2 #	<2 #	
Alkalinity, Total as CaCO3	<2 mg/l	TM043	2.5	4 #	2 #	3.5	
Alkalinity, Bicarbonate as CaCO3	<2 mg/l	TM043	2.5	4	2	3.5	
Ammoniacal Nitrogen as N (low level)	<0.01 mg/l	TM099	0.037	0.036	0,024	0.032	
Conductivity @ 20 deg.C	<0.02 mS/cm	TM120	0.025	0.0377	0.0281	0.0293 #	
Phosphorus (tot.unfilt)	<\$0 µg/l	TM152	<20 2#	<20 #	<20 #	<20	
Nitrite as NO2	<0.05 mg/l	TM184	0.273	<0.05	<0.05	<0.05	
Phosphate (Ortho as P)	<0.02 mg/l	TM184	<0.02	<0.02	<0.02	<0.02	
Nitrate as NO3	<0,3 mg/l	TM184	<0,3	0.384	<0.3	<0.3	
Turbidity	<0.1 ntu	TM195	0.561	3.65	1.62	2.22	
pH	<1 pH Units	TM256	6.69	@# 6.74	6.47	7.03	
Apparent Colour	<1 mg/l	TM261	37.4	75.2	52	61.3	
True Colour	Pt/Co <1 mg/l	TM261	31.4	61.2	44.2	51.4	
	Pt/Co						

SDG: Location: 210301-15 Inchamore, Co. Cork Client Reference: Order Number: 3188-A2-COC4

Report Number: Superseded Report: 589280

Table of Results - Appendix

Method No	Reference	Description
TM022	Method 2540D, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part120 1981;BS EN 872	Determination of total suspended solids in waters
TM043	Method 23208, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM120	Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM195	Colour and Turbidity of water. Methods for the Examination of Waters and Associated Materials. HMSO, 1981, ISBN 0 11 751955 3.	Determination of Turbidity in Waters & Associated Matrices
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters, HMSO, 1978. ISBN 011-751428-4.	Determination of pH in Water and Leachate using the GLpH pH Meter
TM261	Colour and Turbidity of Waters, Methods for the Examination of Waters and Associated Materials, HMSO, 1981, ISBN 0.11.7519553.	Determination of True and Apparent Colour by Spectrophotometry

of applicable.

C if testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

SDG: Location:

210301-15 Inchamore, Co. Cork

Client Reference: Order Number:

3188-A2-COC4

Report Number: Superseded Report:

589280

Test Completion Dates

Lab Sample No(s)	23815010	23815030	23815049	23815061
Customer Sample Ref.	SHOW THE STATE OF STA	HW-YS-WS-II-	STEELAS OWN (IN ST. 2)	mandowile mandowile
AGS Ref.				
Depth	0.00 + 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00
Туре	Surface Water	Surface Water	Surface Water	Surface Water
Alkalinity as CoCO3	03-Mar-2021	03-Mar-2021	03-Mar-2021	03-Mar-2021
Ammonium Low	04-Mar-2021	04-Mar-2021	04-Mor-2021	04-Mar-2021
Anisna by Kone (w)	04-Mar-2021	04-Mar-2021	04-May-2021	04-Mar-2021
Colour Test	04-Mar-2021	04-May-2021	04-Mar-2021	04-Mar-2021
Conductivity (at 20 deg.C)	93-Mar-2021	03-Mar-2021	03-Mar-2021	03-Mar-2021
hitrits by Kone (w)	02-Mar-2021	02-Mar-2021	02-Mw-2021	02-Mw-2021
piri Value	02-Mar-2021	02-Mor-2021	02-Mor-2021	02-Mar-2021
Phosphate by Kone (w)	03-Mar-2021	02-Mar-2021	02-May-2021	03-Mar-2021
Suspended Solids	02-Mar-2021	02-Mar-2021	02-Mar-2021	02-May-2021
Total Metals by ICP-MS	03-Mar-2021	03-After-2021	03-Mir-2021	03-Mar-2021
Turbidity in waters	02-Mar-2021	02-Mar-2021	02-Mar-2021	02-Mar-2025

SDG: Location: 210301-15 Inchamore, Co. Cork Client Reference: Order Number: 3188-A2-COC4

Report Number: Superseded Report: 589280

endixر ، ، ،

General

- Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOL pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and storage but not analysed.
- With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 4. We take responsibility for any test performed by sub-contraction (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be further or invelor VOC on the test schedule and the result marked as deviating on the certificate.
- 6. NDP No determination possible due to insufficient/unsuitable sample.
- 7. Results relate only to the items tested
- 8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
- 9. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or day rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported it as of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- Stones/debris are not routinely removed. We always endeavour to take a representative out sample from the received sample.
- 11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 12. Mercury results quoted on soils will not include votable mercury as the analysis is performed on a dried and crushed sample.
- r leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss our.
- 14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the feachate produced is measured and fiftered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFED/GCMS and all subcontracted analysis.
- 15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely delibrate and quantify for benzene, toluene, ethylbenzenes and syllenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as upling or ugif. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated activents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 15. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not scoredited if they comprise the major part of the sample.

17. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search, Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs), TICs are outside the scope of UKAS accreditation and are not moisture corrected.

15. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

11	Container with Headspace provided for volatiles analysis	
2	Incorrect container received	
3	Deviation from method	
4	Matrix interference	
	Sample holding time exceeded in laboratory	
@	Sample holding time exceeded due to late arrival of instructions or samples	
5	Sampled on date not provided	

19. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TMD45 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised subsample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Ante et a figur	Sometime
Otrysells	WhiteAsterbe
Armola	Your Acres
Ce d dolla	Blue Admitte
Fibrius Atmille	
Horas Artisphylile	14.
Filmus Tremite	

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 µm diameter, longer than 5 µm and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Standing Committee of Analysts, The Quantification of Asbestos in Soil (2017)

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

APPENDIX 9.5:

SAFETY MATERIAL DATASHEET - CLEARBORE

Product Name: Clearbore Page: 1 of 5

This revision issued: June, 2022

Section 1 - Identification of The Material and Supplier

 Clearbore Pty Ltd
 AUS Freecall 1800 013 210

 62 Mt Tootie Rd
 AUS Fax (02) 4567 0122

 Bilpin, NSW 2758
 NZ Freecall 0800 443 537

 AUSTRALIA
 NZ Freefax 0800 443 538

Chemical nature:

Organic acid with indicator dye.

Trade Name:

Clearbore

Product Use:

Bore water pump cleaner.

Creation Date:

February, 2009

This version issued:

January 2019 and is valid for 5 years from this date.

Section 2 - Hazards Identification

Statement of Hazardous Nature

This product is classified as: Xn, Harmful. Xi, Irritating, Hazardous according to the criteria of SWA.

Not a Dangerous Good according to the Australian Dangerous Goods (ADG) Code.

Risk Phrases: R36, R21/22. Irritating to eyes, Harmful in contact with skin and if swallowed.

Safety Phrases: S2, S20, S22, S45, S24/25, S36/39. Keep out of reach of children. When using, do not eat or drink. Do not breathe dust. In case of accident or if you feel unwell, contact a doctor or Poisons Information Centre immediately (show this MSDS where possible). Avoid contact with skin and eyes. Wear suitable protective clothing and eye/face protection.

SUSMP Classification: S6

ADG Classification: None allocated. Not a Dangerous Good under the ADG Code.

UN Number: None allocated

GHS Signal word: WARNING.

HAZARD STATEMENT:

H302: Harmful if swallowed.

H312: Harmful in contact with skin.

H320: Causes eye irritation.

PREVENTION

P102: Keep out of reach of children.

P264: Wash contacted areas thoroughly after handling.

P280: Wear protective gloves, protective clothing and eye or face protection.

P281: Use personal protective equipment as required.

RESPONSE

P311: If swallowed, call a POISON CENTER or doctor.

P337: If eye irritation persists: seek medical attention.

P353: Rinse skin or shower with water.

P301+P330+P331: IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.

P305+P351+P338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

P337+P313: If eye irritation persists: Get medical advice.

P370+P378: Not Combustible. Use extinguishing media suited to burning materials.

DISPOSAL

P501: Dispose of contents and containers to landfill.

Emergency Overview

Physical Description & Colour: Blue crystalline solid.

Odour: No odour.

Major Health Hazards: harmful in contact with skin, and if swallowed, eye irritant.

SAFETY DATA SHEET

Issued by: Clearbore Pty Ltd AUS Freecall 1800 013 210

NZ Freecall 0800 443 537

Poisons Information Centre: 13 1126 from anywhere in Australia, 0800 764 766 in New Zealand.

Product Name: Clearbore Page: 2 of 5

This revision issued: June, 2022

Potential Health Effects

Inhalation:

Short Term Exposure: Available data indicates that this product is not harmful. However product may be mildly irritating, although unlikely to cause anything more than mild transient discomfort.

Long Term Exposure: No data for health effects associated with long term inhalation.

Skin Contact:

Short Term Exposure: Available data shows that this product is harmful, but symptoms are not available. In addition product may be irritating, but is unlikely to cause anything more than mild transient discomfort.

Long Term Exposure: No data for health effects associated with long term skin exposure.

Eve Contact:

Short Term Exposure: This product is an eye irritant. Symptoms may include stinging and reddening of eyes and watering which may become copious. Other symptoms may also become evident. If exposure is brief, symptoms should disappear once exposure has ceased. However, lengthy exposure or delayed treatment may cause permanent damage.

Long Term Exposure: No data for health effects associated with long term eye exposure.

Ingestion:

Short Term Exposure: Significant oral exposure is considered to be unlikely. Available data shows that this product is harmful, but symptoms are not available. However, this product is an oral irritant. Symptoms may include burning sensation and reddening of skin in mouth and throat. Other symptoms may also become evident, but all should disappear once exposure has ceased.

Long Term Exposure: No data for health effects associated with long term ingestion.

Carcinogen Status:

SWA: No significant ingredient is classified as carcinogenic by SWA.
NTP: No significant ingredient is classified as carcinogenic by NTP.
IARC: No significant ingredient is classified as carcinogenic by IARC.

Section 3 - Composition/Information on Ingredients						
Ingredients	CAS No	Conc,%	TWA (mg/m³)	STEL (mg/m³)		
Oxalic acid	144-62-7	>60	1	2		
Other non hazardous ingredients	secret	to 100	not set	not set		

This is a commercial product whose exact ratio of components may vary slightly. Minor quantities of other non hazardous ingredients are also possible.

The SWA TWA exposure value is the average airborne concentration of a particular substance when calculated over a normal 8 hour working day for a 5 day working week. The STEL (Short Term Exposure Limit) is an exposure value that may be equalled (but should not be exceeded) for no longer than 15 minutes and should not be repeated more than 4 times per day. There should be at least 60 minutes between successive exposures at the STEL. The term "peak "is used when the TWA limit, because of the rapid action of the substance, should never be exceeded, even briefly.

Section 4 - First Aid Measures

General Information:

You should call The Poisons Information Centre if you feel that you may have been poisoned, burned or irritated by this product. The number is 13 1126 from anywhere in Australia (0800 764 766 in New Zealand) and is available at all times. Have this MSDS with you when you call.

Inhalation: No first aid measures normally required. However, if inhalation has occurred, and irritation has developed, remove to fresh air and observe until recovered. If irritation becomes painful or persists more than about 30 minutes, seek medical advice.

Skin Contact: Quickly and gently brush away excess solids. Wash gently and thoroughly with warm water (use non-abrasive soap if necessary) for 10-20 minutes or until product is removed. Under running water, remove contaminated clothing, shoes and leather goods (e.g. watchbands and belts) and completely decontaminate them before reuse or discard.

Eye Contact: Quickly and gently brush particles from eyes. Immediately flush the contaminated eye(s) with lukewarm, gently flowing water for 20 minutes or until the product is removed, while holding the eyelid(s) open. Take care not to rinse contaminated water into the unaffected eye or onto the face. Obtain medical attention immediately. Take special care if exposed person is wearing contact lenses.

Ingestion: If swallowed, do NOT induce vomiting. Wash mouth with water and contact a Poisons Information Centre, or call a doctor.

SAFETY DATA SHEET

Issued by: Clearbore Pty Ltd

AUS Freecall 1800 013 210

NZ Freecall 0800 443 537

Poisons Information Centre: 13 1126 from anywhere in Australia, 0800 764 766 in New Zealand.

Product Name: Clearbore

Page: 3 of 5 This revision issued: June, 2022

Section 5 - Fire Fighting Measures

Fire and Explosion Hazards: There is no risk of an explosion from this product under normal circumstances if it is involved in a fire. Violent steam generation or eruption may occur upon application of direct water stream on hot liquids.

Fire decomposition products from this product may be toxic if inhaled. Take appropriate protective measures.

Extinguishing Media: Not Combustible. Use extinguishing media suited to burning materials. Fire Fighting: If a significant quantity of this product is involved in a fire, call the fire brigade.

Flash point: Combustible solid.

Upper Flammability Limit: No data. Lower Flammability Limit: No data. Autoignition temperature: No data.

Flammability Class: Combustible solid.

Section 6 - Accidental Release Measures

Accidental release: In the event of a major spill, prevent spillage from entering drains or water courses. Wear full protective clothing including eye/face protection. All skin areas should be covered. See below under Personal Protection regarding Australian Standards relating to personal protective equipment. Suitable materials for protective clothing include rubber, Nitrile, butyl rubber, neoprene. Eye/face protective equipment should comprise as a minimum, protective goggles. If there is a significant chance that dusts are likely to build up in cleanup area, we recommend that you use a suitable Dust Mask. Use a P1 mask, designed for use against mechanically generated particles eg silica & asbestos. Otherwise, not normally necessary.

Stop leak if safe to do so, and contain spill. Sweep up and shovel or collect recoverable product into labelled containers for recycling or salvage, and dispose of promptly. Consider vacuuming if appropriate. Recycle containers wherever possible after careful cleaning. After spills, wash area preventing runoff from entering drains. If a significant quantity of material enters drains, advise emergency services. This material may be suitable for approved landfill. Ensure legality of disposal by consulting regulations prior to disposal. Thoroughly launder protective clothing before storage or re-use. Advise laundry of nature of contamination when sending contaminated clothing to laundry.

Section 7 - Handling and Storage

Handling: Keep exposure to this product to a minimum, and minimise the quantities kept in work areas. Check Section 8 of this MSDS for details of personal protective measures, and make sure that those measures are followed. The measures detailed below under "Storage" should be followed during handling in order to minimise risks to persons using the product in the workplace. Also, avoid contact or contamination of product with incompatible materials listed in Section 10.

Storage: This product is a Scheduled Poison. Observe all relevant regulations regarding sale, transport and storage of this schedule of poison. Store packages of this product in a cool place. Make sure that containers of this product are kept tightly closed. Keep containers dry and away from water. Make sure that the product does not come into contact with substances listed under "Incompatibilities" in Section 10. Check packaging - there may be further storage instructions on the label.

Section 8 - Exposure Controls and Personal Protection

The following Australian Standards will provide general advice regarding safety clothing and equipment: Respiratory equipment: AS/NZS 1715, Protective Gloves: AS 2161, Occupational Protective Clothing: AS/NZS 4501 set 2008, Industrial Eye Protection: AS1336 and AS/NZS 1337, Occupational Protective Footwear: AS/NZS2210.

SWA Exposure Limits TWA (mg/m³) STEL (mg/m³)

No special equipment is usually needed when occasionally handling small quantities. The following instructions are for bulk handling or where regular exposure in an occupational setting occurs without proper containment systems. **Ventilation:** This product should only be used in a well ventilated area. If natural ventilation is inadequate, use of a fan is suggested.

Eye Protection: Protective glasses or goggles should be worn when this product is being used. Failure to protect your eyes may cause them harm. Emergency eye wash facilities are also recommended in an area close to where this product is being used.

Skin Protection: Prevent skin contact by wearing impervious gloves, clothes and, preferably, apron. Make sure that all skin areas are covered. See below for suitable material types.

Protective Material Types: We suggest that protective clothing be made from the following materials: rubber, nitrile, butyl rubber, neoprene.

SAFETY DATA SHEET

Poisons Information Centre: 13 1126 from anywhere in Australia, 0800 764 766 in New Zealand.

Issued by: Clearbore Pty Ltd AUS Freecall 1800 013 210 NZ Fre

Product Name: Clearbore Page: 4 of 5

This revision issued: June, 2022

Respirator: If there is a significant chance that dusts are likely to build up in the area where this product is being used, we recommend that you use a suitable Dust Mask. Otherwise, not normally necessary.

Eyebaths or eyewash stations and safety deluge showers should be provided near to where this product is being used.

Section 9 - Physical and Chemical Properties:

Physical Description & colour:

Blue crystalline solid. No adour.

Odour: **Boiling Point:**

No specific data. Expected to decompose before boiling.

Freezing/Melting Point:

Volatiles:

No specific data. Expected to be low at 100°C. Negligible at normal ambient temperatures.

Vapour Pressure: Vapour Density:

No data. 1.65 at 20°C

Specific Gravity: Water Solubility:

Soluble.

pH: Volatility: 2 approx (concentration not given)

Odour Threshold:

Negligible at normal ambient temperatures. No data.

Evaporation Rate: Coeff Oil/water Distribution: No data No data No data.

Autoignition temp:

Section 10 - Stability and Reactivity

Reactivity: This product is unlikely to react or decompose under normal storage conditions. However, if you have any doubts, contact the supplier for advice on shelf life properties.

Conditions to Avoid: This product should be kept in a cool place, preferably below 30°C. Keep containers tightly closed. Containers should be kept dry.

Incompatibilities: strong oxidising agents, zinc, tin, aluminium and their alloys.

Fire Decomposition: Carbon dioxide, and if combustion is incomplete, carbon monoxide and smoke, Water. Carbon monoxide poisoning produces headache, weakness, nausea, dizziness, confusion, dimness of vision, disturbance of judgment, and unconsciousness followed by coma and death.

Polymerisation: This product will not undergo polymerisation reactions.

Section 11 - Toxicological Information

Local Effects:

Target Organs:

There is no data to hand indicating any particular target organs.

Classification of Hazardous Ingredients

Ingredient

Risk Phrases

Oxalic Acid

Conc>=5%: Xn: R21/22

Section 12 - Ecological Information

This product is biodegradable. It will not accumulate in the soil or water or cause long term problems. This product is unlikely to accumulate in body tissues.

Section 13 - Disposal Considerations

Disposal: This product may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. If neither of these options is suitable, consider controlled incineration, or landfill,

Section 14 - Transport Information

ADG Code: This product is not classified as a Dangerous Good. No special transport conditions are necessary unless required by other regulations.

Section 15 - Regulatory Information

AICS: All of the significant ingredients in this formulation are compliant with NICNAS regulations. The following ingredient: Oxalic acid, is mentioned in the SUSMP.

SAFETY DATA SHEET

Issued by: Clearbore Pty Ltd

AUS Freecall 1800 013 210

NZ Freecall 0800 443 537

Poisons Information Centre: 13 1126 from anywhere in Australia, 0800 764 766 in New Zealand.

Product Name: Clearbore

Page: 5 of 5 This revision issued: June, 2022

Section 16 - Other Information

This MSDS contains only safety-related information. For other data see product literature.

Acronyms:

ADG Code

Australian Code for the Transport of Dangerous Goods by Road and Rail (7th edition)

AICS SWA CAS number

Australian Inventory of Chemical Substances Safe Work Australia, formerly ASCC and NOHSC Chemical Abstracts Service Registry Number International Agency for Research on Cancer

IARC NTP

National Toxicology Program (USA)

R-Phrase

Risk Phrase

SUSMP

Standard for the Uniform Scheduling of Medicines & Poisons

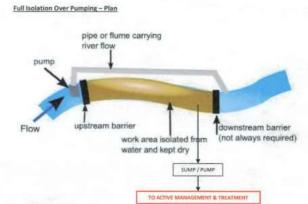
UN Number

United Nations Number

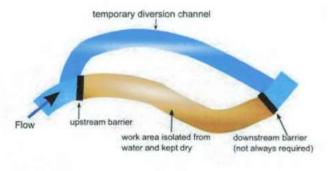
THIS MSDS SUMMARISES OUR BEST KNOWLEDGE OF THE HEALTH AND SAFETY HAZARD INFORMATION OF THE PRODUCT AND HOW TO SAFELY HANDLE AND USE THE PRODUCT IN THE WORKPLACE. EACH USER MUST REVIEW THIS MSDS IN THE CONTEXT OF HOW THE PRODUCT WILL BE HANDLED AND USED IN THE WORKPLACE.

IF CLARIFICATION OR FURTHER INFORMATION IS NEEDED TO ENSURE THAT AN APPROPRIATE RISK ASSESSMENT CAN BE MADE, THE USER SHOULD CONTACT THIS COMPANY SO WE CAN ATTEMPT TO OBTAIN ADDITIONAL INFORMATION FROM OUR SUPPLIERS OUR RESPONSIBILITY FOR PRODUCTS SOLD IS SUBJECT TO OUR STANDARD TERMS AND CONDITIONS, A COPY OF WHICH IS SENT TO OUR CUSTOMERS AND IS ALSO AVAILABLE ON REQUEST.

Please read all labels carefully before using product.


This MSDS is prepared in accord with the SWA document "Preparation of Safety Data Sheets for Hazardous Chemicals - Code of Practice" (December 2011)

Copyright © Kilford & Kilford Pty Ltd, June, 2022.


http://www.kilford.com.au/ Phone +61 2 9251 4532

APPENDIX 9.6:

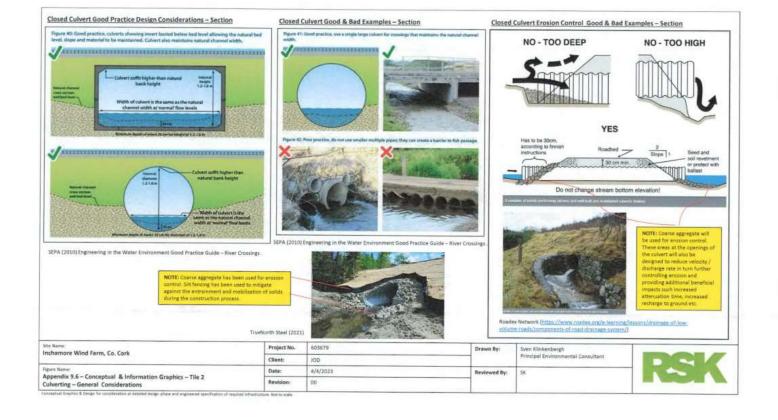
CONCEPTUAL AND INFO GRAPHICS

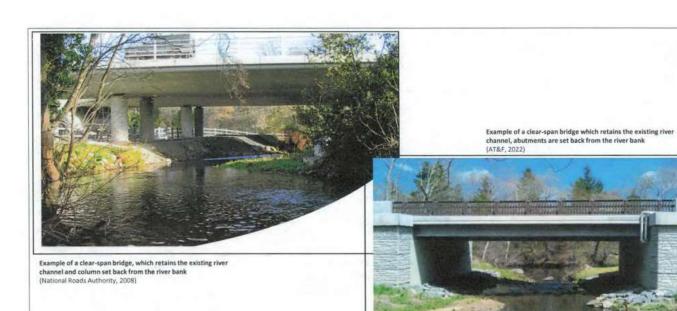
Full Isolation by Diversion - Plan

- NOTEs:

 Full isolation over pumping / siphon. A whole section of the channel is isolated using barriers that span the full width of the river. This keeps a stretch of the river dry and the water is transferred downstream of the works area by mechanical assistance (pumping or siphon). The pump and associated pipework need not be located in the isolated area.

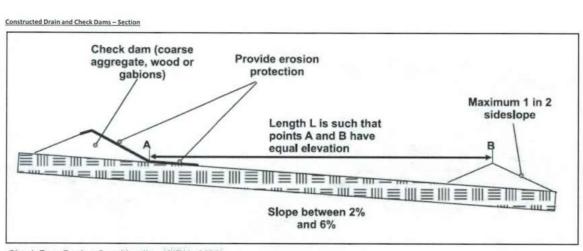
 This method is the preferred method for channel silversion during instream works, for example, during watercourse crossing / cilwert construction. However, the pumping equipment deployed must be capable of the surface water feature discharge rate, including back up equipment and fall safe protocols.


- NOTES:


 * Full isolation temporary diversion channel. A whole section of the channel is isolated and kept dry, and the water is transferred downstream of the works area by excevating a temporary open channel.

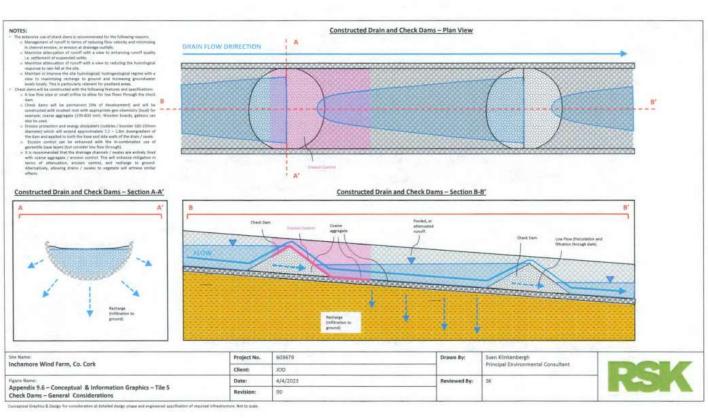
 * This is the less preferred method due to the destructive nature of constructing temporary diversion channels. However, in some instances where discharge rates are high, this method will negate the requirement for large volume pumping and associated inherent risks.

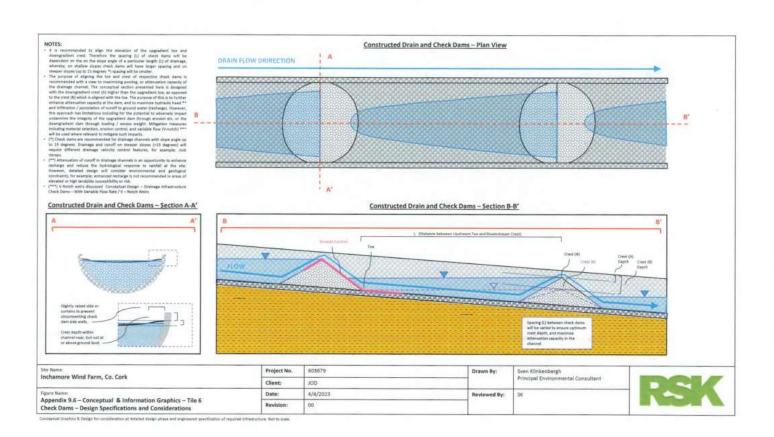
SEPA (2009) Engineering in the Water Environment Good Practice Guide - Temporary Construction Methods


Site Name: Inchamore Wind Farm, Co. Cork	Project No.	603679	Drawn By:	Sven Klinkenbergh		
inclamore wind rarm, co. core	Client:	JOD		Principal Environmental Consultant		
Figure Name:	Date:	4/4/2023	Reviewed By:	SK		
Appendix 9.6 – Conceptual & Information Graphics – Tile 1 Over Pumping – General Considerations	Revision:	00				

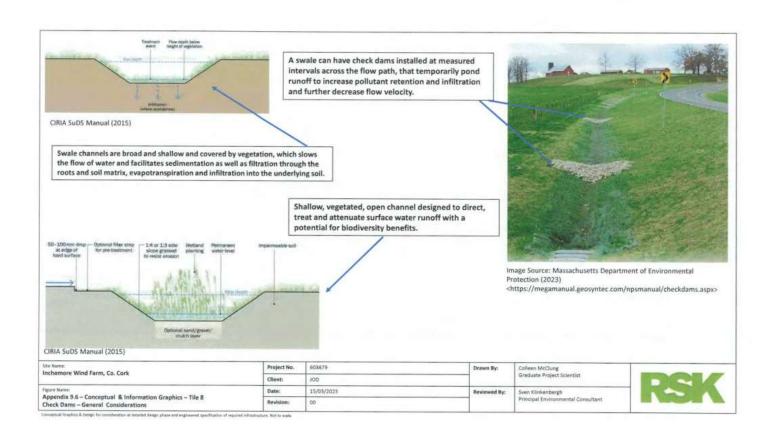
Site Name: Inchamore Wind Farm, Co. Cork	Project No.	603679	Drawn By:	Sven Klinkenbergh Principal Environmental Consultant	
Inchamore Wind Farm, Co. Cork	Client:	100		Principal Environmental Conduitant	
Figure Name:	Date:	4/4/2023	Reviewed By:	sk	
Appendix 9.6 – Conceptual & Information Graphics – Tile 3 Example of Clear Span Bridges	Revision:	00			

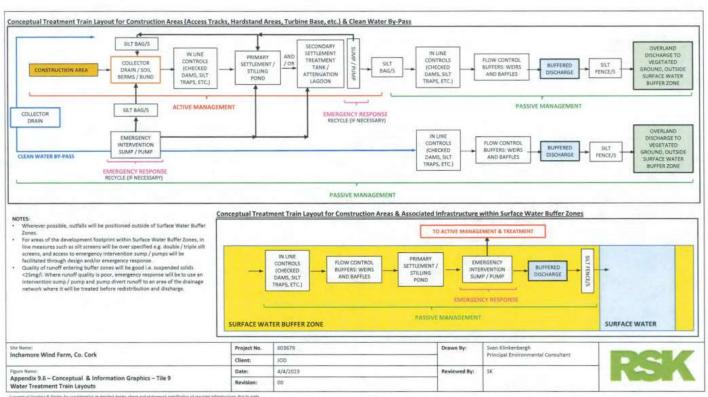
Compaptual Braphics & Design for consideration at detailed design phase and engineered specification of required infrastructure. Not to scale

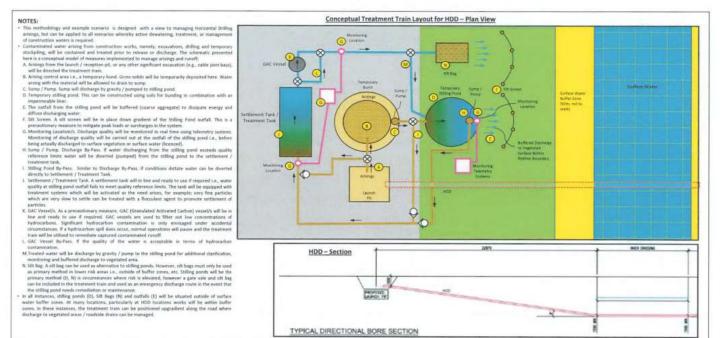


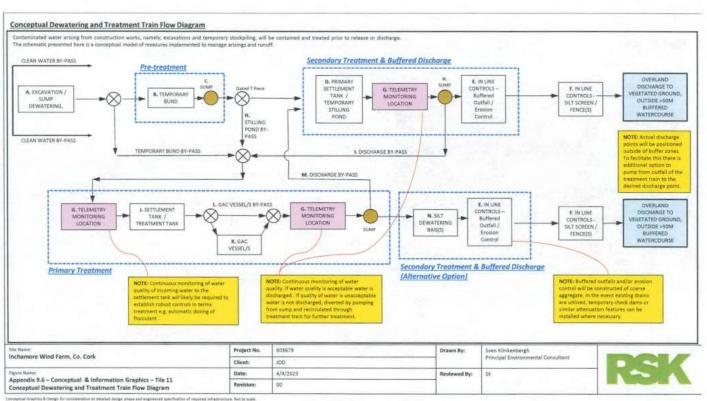

Check Dam Design Consideration (CIRIA, 2004)

Site Name: Inchamore Wind Farm, Co. Cork	Project No.	603679	Drawn By:	Sven Klinkenbergh
monantine will partly co. cork	Client:	JOD		Principal Environmental Consultant
Figure Name:	Date:	4/4/2023	Reviewed By:	SK
Appendix 9.6 – Conceptual & Information Graphics – Tile 4 Check Dams – General Considerations	Revision:	06		

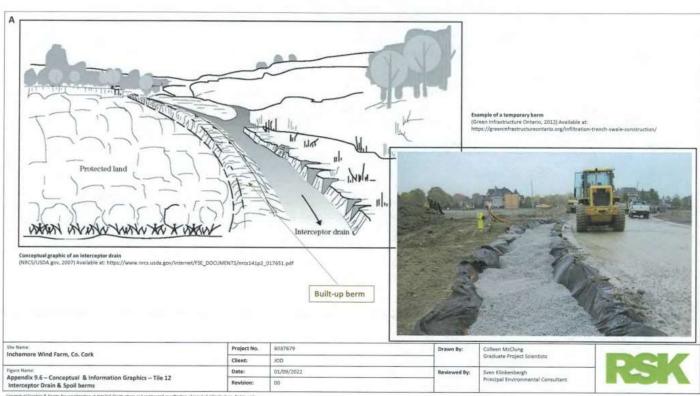



Conceptual Graphics & Design for consideration at detailed design phase and engineered specification of required infrastructure, Not to scale.

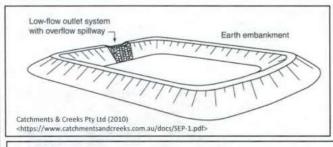


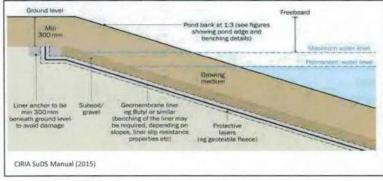


Conceptual Graphics & Design for consideration at detailed design phase and engineered specification of required infrastructure. Not to scale



Ste Name: Inchamore Wind Farm, Co. Cork	Project No.	803679	Drawn By:	Sven Klinkenbergh	RSK
	Client:	100		Principal Environmental Consultant	
Figure Name:	Date:	4/4/2023	Reviewed By:	rviewed By: SK	
Appendix 9.6 – Conceptual & Information Graphics – Tile 10 Treatment Train Layout for Active Runoff Management (e.g. HDD)	Revision:	00			III AND III


Correspond Graphics & Design for consideration at detailed design phase and engineered aperitiration of required infrastructure. Not to peak,



Conceptual Graphics & Design for consideration at detailed design phase and engineered specification of required infrastructure. Not so scale

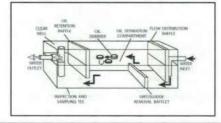
Conceptual Graphics & Design for consideration at detailed slessing phase and engineered specification of required infrastructure. Not to acai

United Nations Food and Agriculture Organization
https://www.fao.org/fishery/docs/CDrom/FAO_Training/FAO_Training/General/x6708e/x6708e01.htm

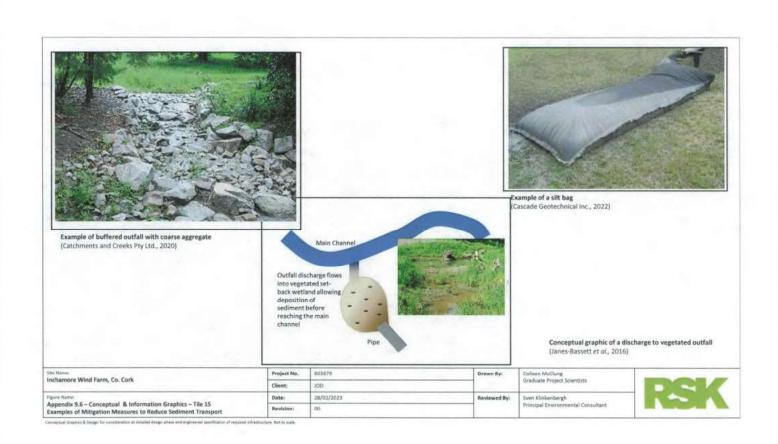
Ponds should be designed to mimic natural forms and have varying depths which can provide a range of different habitats.

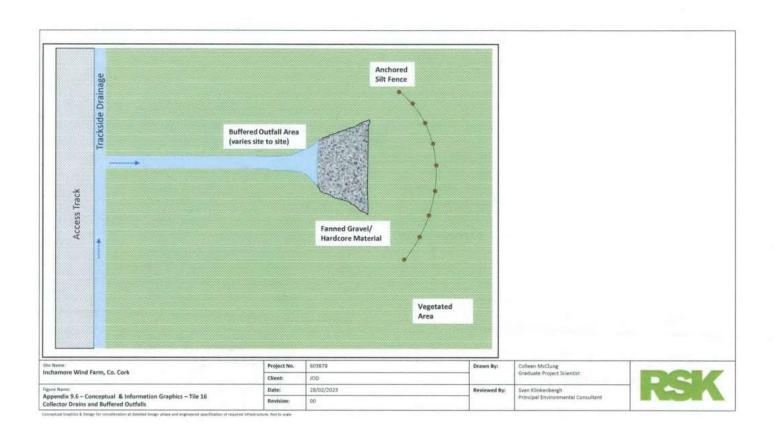
Site Name:	Project No.	603679	Drawn By:
Inchamore Wind Farm, Co. Cork	Client:	100	
Figure Name: Appendix 9.6 – Conceptual & Information Graphics – Tile 13 Settlement Ponds	Date:	28/02/2023	Reviewed By:
	Revision:	00	

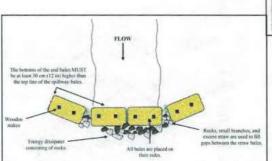
Colleen McClung Graduate Project Scientist

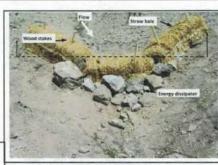


Example of an oil-water separator Minerex Environmental Limited, an RSK Group company


Sithuster * (2011) "Solutions for Suspended Solids Removal: Hire, Sales & Technical Support" Sithuster Ltd. Available at: https://www.sithuster.co.uk/wp-content/uploads/2020/10/Solutions-for-Suspended-Solids-Removal.pdf.



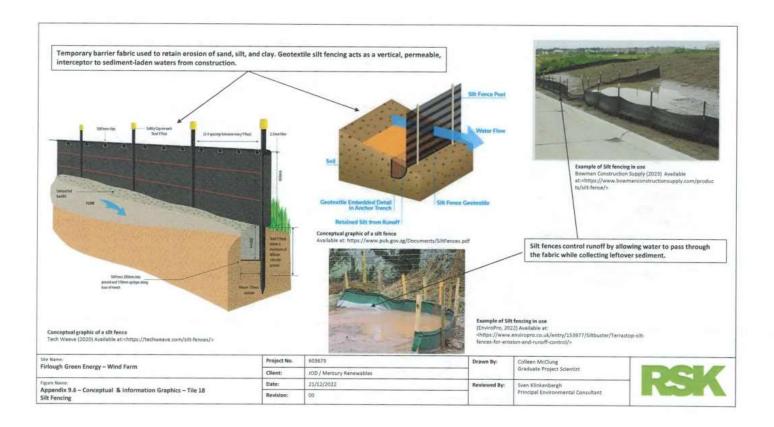

Cross-section of oil-water separa Mohr, Kirby S. (2014)


Project No.	603679	Drawn By:	Colleen McClung	
Client:	IOD		Graduate Project Scientists	
Date:	28/03/2023	Reviewed By:	Sven Klinkenbergh Principal Environmental Consultant	
Revision:	90			
	Client: Date:	Client: JOD Date: 28/03/2023	Client: JOD	Client: JOD Graduate Project Scientists Date: 28/03/2023 Reviewed By: Sven Klinkenbergh Principal Foliations of Principal Foliations (Consultant

Conceptual Graphics & Design for consideration at detailed design phase and engineered specification of required infrastructure. Not to our

Example of a Strawbale Checked Dam Robichaud, et al. (2019)

Example of a Strawbale Checked Dam (Kawartha Conservation, 2020)


Conceptual graphic of a straw bale checked dam (Storrar, 2013)	
She Name:	P
Inchamore Wind Farm, Co. Cork	C
Figure Name:	0
Appendix 9.6 - Conceptual & Information Graphics - Tile 17 Framples of Mitigation Measures to Reduce Sediment Transport - Straw Bales	R

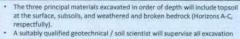
Project No. 603679		Drawn By:
Client:	300	
Date:	28/02/2023	Reviewed By
Revision:	00	

Colleen McClung Graduate Project Scientist Sven Klinkenbergh Principal Environmental Consultant

Conceptual Graphics & Design for consideration at detailed design phase and engineered specification of required infrastructure. Not to scale

Polymer Spill Kit (Yellow Shield Ltd., 2023) Available at: https://www.yellowshield.co.uk/polymer-spill-kit

Maintenance Spill Kit (Hyde Parl Environmental, 2023) Available at: https://hydeparkenvironmental.com/1.100-litre-maintenance-emergency-spillkit/utm_pource-email&utm_medium-email&utm_campaign-HMK234%2F0 3.23


THE RESERVE OF THE PERSON OF T		11-17-			
Ste Name: Inchamore Wind Farm Co., Cork	Project No.	603679	Drawn By:	Colleen McClung	
THE THE PARTY CO., CO.	Client:	30D		Graduate Project Scientists	
Figure Name:	Date:	07/03/2023	Reviewed By: Siven Klinkenbergh Principal Environmental Co		
Appendix 9.6 – Conceptual & Information Graphics – Tile 20 Emergency Spill Kits	Revision:	00		Principal Environmental Consultant	

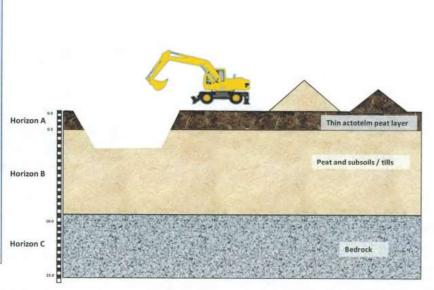
Conceptual Graphics & Design for consideration at detailed design phase and engineered specification of recipited infrastruction. Not to scale

Project No.	603679	Drawn By:	Colleen McClung Graduate Project Scientist	
Client:	JOD			
Date:	01/09/2022	Reviewed By:	Sven Klinkenbergh	
Revision:	00		Principal Environmental Consultant	
	Client: Date:	Client: JOD Date: 01/09/2022	Client: JOD	Client: JOD Graduate Project Scientist Date: 01/09/2022 Reviewed By: Sven Klinkenbergh Principal Environmental Consultant

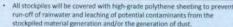
- and the principal material types (topsoil, subsoil and bedrock) will be segregated as they arise. Temporary storage locations and stockpiled arisings will be managed in such
- a way that as to not mix induvial soils types which will, in turn will facilitate reuse on Site. Some measures which will be taken include;

 Designated areas for each type of material which will be adequately sized based on Material Balance Assessment calculations and planned storage height.
 Incorporating the planned movement of materials for example
- pianned storage height.

 Incorporating the planned movement of materials for example; actotelm peat will be the first material to be excavated and the last to be used in reinstatement.


 Adequate space between stockpiles to reduce the potential of mixing when material is being deposited or removed, or if localized stability issues arise for example; stockpile collapse.

 It is also important to mitigate against the entrainment of solids in runoff (EIAR Chapter 9 Hydrology & hydrogeology).


 In order to reduce the amount of arisings to be managed or stored at any one time during the construction phase, a Materials Balance Assessment and Materials Management Plan will be developed with a view to identifying suitable locations for permanent reinstatement as early as possible, for example; as the construction phase progresses, opportunities to move arisings to a permanent reinstatement area in one movement will be taken as often as possible.

 Backfilling in layers will be carried out at the designated reinstatement locations, this will include; use of material as fill under infrastructure, backfill around newly installed infrastructure e.g. foundations, and potentially in improvement areas.

 Infilling with material in identified soll horizons to revert these areas to hasaling that.
- · Infilling with material in identified soil horizons to revert these areas to

Sile Name Inchamore Wind Farm, Co. Cork	Project No.	603679	Drawn By:	Colleen McClung	
	Client:	300		Graduate Project Scientist	RSK
Figure Name: Appendix 9.6 - Conceptuel & Information Graphics - Tile 22 Conceptual Soil Horizon Graphic	Date:	07/03/2023	Reviewed By:	wed By: Sven Klinkenbergh Principal Environmental Consultant	
	Revision:	00			

- All stockpiles will be covered with high-grade polythene sheeting to prevent run-off of rainwater and leaching of potential contaminants from the stockpiled material generation and/or the generation of dust.

 Recovered material destined for reuse off site will comply with Article 27 or Article 28 of the EPA to be classified as a by-product or as end-of-life waste, or Certificate of Registration for soils.

 Excess soils which cannot be reused will be tested and classified as a waste and disposed of appropriately.

 Temporary stockpiles will avoid areas on Site near artificial drainage channels (outside designated surface water buffer zones and will adhere to mitigation measures outline in EIAR Chapter 9 Hydrology and Hydrogeology, in dealing with entrainment of soils in surface water runoff.

Site Name: Inchamore Wind Farm, Co. Cork	Project No.	603679	Drawn By:	Colleen McClung Graduate Project Scientist	RSK
	Client:	300			
Figure Name: Appendix 9.6 - Conceptuel & Information Graphics - Tile 23 Conceptual Management of Stockpiles Graphic	Date:	07/03/2023	Reviewed By:	Sven Klinkenbergh Principal Environmental Consultant	
	Revision:	00			
Conceptual Graphics & Design for consideration at detailed design phase and engineered specification of requires	s befrastructure. Not to make.	-			